Skip to Main Content
 

Global Search Box

 
 
 
 

ETD Abstract Container

Abstract Header

Hybrid Electric Vehicle Powertrain: On-line Parameter Estimation of an Induction Motor Drive and Torque Control of a A PM BLDC Starter-generator

Hasan, S.M. Nayeem

Abstract Details

2008, Doctor of Philosophy, University of Akron, Electrical Engineering.
A hybrid electric vehicle (HEV) powertrain consists of both a mechanical power transmission path and an electric power transmission path. A supervisory vehicle controller generates the control commands for the subsystems in the powertrain based on the driver request and vehicle speed. Fuel efficiency and emissions from the internal combustion (IC) engine depend on use of the subsystems in both the power transmission paths. The major subsystems in the electric power transmission path (EPTP) are the motor drives that run either in the generating mode or in the motoring mode to process the power flow between the source and the wheels. In this research, two advanced motor drive subsystems with improved controllers have been designed and developed for an HEV powertrain. The two subsystems are the starter-generator electric drive and the propulsion motor drive. The contribution of this research will enable efficient utilization of the HEV powertrain. An advanced electric drive controller for a high power starter-generator subsystem based on a permanent magnet brushless DC (PM BLDC) machine is presented. The PM BLDC machine is belt-coupled to a diesel engine in a series-parallel 2×2 HEV. The PM BLDC electric drive is developed for engine starting, generating and motoring. Computer simulations are performed for tuning the controller parameters, and for selecting proper inverter rating of the starter-generator drive. The drive controller is implemented in hardware using Texas Instruments fixed point TMS320F2812 digital signal processor (DSP) and a high resolution current sensing board to achieve the best torque regulation at various load conditions. The PM BLDC starter-generator has been tested in both motoring (engine starting) and generating modes with the starter-generator mounted in the vehicle. For the propulsion motor drive, an induction motor driven by a three-phase PWM inverter has been considered. The induction motor drive cannot deliver high static and dynamic performance without the correct parameter values in the controller. Computer simulations showed the parameter variation effects on the performance of an induction motor drive used in an electric vehicle. A novel Luenberger-sliding mode observer based induction motor controller with on-line parameter adaptation is then presented. Software-in-the-loop (SIL) and hardware-in-the-loop (HIL) simulations have been performed for a high power induction motor with electric vehicle load to verify the performance of the new Luenberger-sliding mode observer based parameter adaptation algorithm as well as to tune the control parameters. For the HIL simulation, the controller was implemented in an FPGA based control hardware, and a virtual motor model was implemented in software. The new on-line parameter adaptation algorithm has been tested experimentally on a small induction machine for a proof-of-concept demonstration. The developed algorithm provides fast convergence of parameters, rapid response characteristics of the drive, and accurate tracking of the control command for the induction motor drive. These performance features are highly desirable for the propulsion motor in HEVs and EVs.
Iqbal Husain, PhD (Advisor)
206 p.

Recommended Citations

Citations

  • Hasan, S.M. N. (2008). Hybrid Electric Vehicle Powertrain: On-line Parameter Estimation of an Induction Motor Drive and Torque Control of a A PM BLDC Starter-generator [Doctoral dissertation, University of Akron]. OhioLINK Electronic Theses and Dissertations Center. http://rave.ohiolink.edu/etdc/view?acc_num=akron1208185834

    APA Style (7th edition)

  • Hasan, S.M.. Hybrid Electric Vehicle Powertrain: On-line Parameter Estimation of an Induction Motor Drive and Torque Control of a A PM BLDC Starter-generator. 2008. University of Akron, Doctoral dissertation. OhioLINK Electronic Theses and Dissertations Center, http://rave.ohiolink.edu/etdc/view?acc_num=akron1208185834.

    MLA Style (8th edition)

  • Hasan, S.M.. "Hybrid Electric Vehicle Powertrain: On-line Parameter Estimation of an Induction Motor Drive and Torque Control of a A PM BLDC Starter-generator." Doctoral dissertation, University of Akron, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=akron1208185834

    Chicago Manual of Style (17th edition)