Skip to Main Content
 

Global Search Box

 
 
 
 

ETD Abstract Container

Abstract Header

Femtosecond Dynamics of Small Polyatomic Molecules in Solution: A Combined Experimental and Computational Approach

El-Khoury, Patrick Z.

Abstract Details

2010, Doctor of Philosophy (Ph.D.), Bowling Green State University, Photochemical Sciences.
A detailed understanding of condensed-phase ultrafast photo-induced chemical reaction dynamics is still sought after. This is because of the intrinsic complexity of liquid-phase photophysical and photochemical phenomena arising from competing intra- and intermolecular processes. Such processes often take place on a timescale of a few femtoseconds to several tens of picoseconds. In this work, the model photochemical processes used to investigate ultrafast photo-induced reaction dynamics in solution are bond-breaking and bond making reactions. The model compounds are di- and poly-halogenated methanes. The gas-phase photochemistry of these small molecules is thoroughly investigated, which enables to draw a direct comparison to the photophysical and photochemical dynamics in solution. Moreover, in contrast to the thoroughly investigated di- and triatomic molecular systems, more vibrational degrees of freedom are available both to the model parent molecules and nascent polyatomic radical species. Thus, a detailed mapping of the photochemical reaction paths of these systems develops into a comparative advantage, revealing different couplings between the reactive modes and other dark states in a far-from-equilibrium situation. The complexity of the encountered ultrafast phenomena requires the use of several experimental and computational approaches. Results of femtosecond transient absorption, picosecond transient resonance Raman, and matrix isolation experiments in concert with ground and excited state ab initio calculations are discussed in this context. The findings from this work illustrate the power of a solvent environment in (i) altering the topology of ground and excited state potential energy surfaces, and (ii) leading to different photoproducts through intermediates otherwise absent from gas-phase studies.
Alexander Tarnovsky, PhD (Committee Chair)
Massimo Olivucci, PhD (Committee Co-Chair)
R. Marshall Wilson, PhD (Committee Member)
H. Peter Lu, PhD (Committee Member)
Rex Lowe, PhD (Other)
168 p.

Recommended Citations

Citations

  • El-Khoury, P. Z. (2010). Femtosecond Dynamics of Small Polyatomic Molecules in Solution: A Combined Experimental and Computational Approach [Doctoral dissertation, Bowling Green State University]. OhioLINK Electronic Theses and Dissertations Center. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1272899005

    APA Style (7th edition)

  • El-Khoury, Patrick. Femtosecond Dynamics of Small Polyatomic Molecules in Solution: A Combined Experimental and Computational Approach. 2010. Bowling Green State University, Doctoral dissertation. OhioLINK Electronic Theses and Dissertations Center, http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1272899005.

    MLA Style (8th edition)

  • El-Khoury, Patrick. "Femtosecond Dynamics of Small Polyatomic Molecules in Solution: A Combined Experimental and Computational Approach." Doctoral dissertation, Bowling Green State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1272899005

    Chicago Manual of Style (17th edition)