Skip to Main Content
 

Global Search Box

 
 
 
 

ETD Abstract Container

Abstract Header

Numerical Modeling of Upward Flame Spread and Burning of Wavy Thin Solids

Stalcup, Erik James

Abstract Details

, Master of Sciences, Case Western Reserve University, EMC - Aerospace Engineering.
Flame spread over solid fuels with simple geometries has been extensively studied in the past, but few have investigated the effects of complex fuel geometry. This study uses numerical modeling to analyze the flame spread and burning of wavy (corrugated) thin solids and the effect of varying the wave amplitude. Sensitivity to gas phase chemical kinetics is also analyzed. Fire Dynamics Simulator is utilized for modeling. The simulations are two-dimensional Direct Numerical Simulations including finite-rate combustion, first-order pyrolysis, and gray gas radiation. Changing the fuel structure configuration has a significant effect on all stages of flame spread. Corrugated samples exhibit flame shrinkage and break-up into flamelets, behavior not seen for flat samples. Increasing the corrugation amplitude increases the flame growth rate, decreases the burnout rate, and can suppress flamelet propagation after shrinkage. Faster kinetics result in slightly faster growth and more surviving flamelets. These results qualitatively agreement with experiments.
James T'ien (Committee Chair)
Joseph Prahl (Committee Member)
Yasuhiro Kamotani (Committee Member)

Recommended Citations

Citations

  • Stalcup, E. J. (n.d.). Numerical Modeling of Upward Flame Spread and Burning of Wavy Thin Solids [Master's thesis, Case Western Reserve University]. OhioLINK Electronic Theses and Dissertations Center. http://rave.ohiolink.edu/etdc/view?acc_num=case1417797653

    APA Style (7th edition)

  • Stalcup, Erik. Numerical Modeling of Upward Flame Spread and Burning of Wavy Thin Solids. Case Western Reserve University, Master's thesis. OhioLINK Electronic Theses and Dissertations Center, http://rave.ohiolink.edu/etdc/view?acc_num=case1417797653.

    MLA Style (8th edition)

  • Stalcup, Erik. "Numerical Modeling of Upward Flame Spread and Burning of Wavy Thin Solids." Master's thesis, Case Western Reserve University. Accessed APRIL 27, 2024. http://rave.ohiolink.edu/etdc/view?acc_num=case1417797653

    Chicago Manual of Style (17th edition)