Skip to Main Content
 

Global Search Box

 
 
 

ETD Abstract Container

Abstract Header

Dependency of Aluminum Nanoparticle Flash Ignition on Sample Internal Water Content and Aggregation

Stenger, Dillon Michael

Abstract Details

2016, Master of Science (M.S.), University of Dayton, Aerospace Engineering.
The United States Air Force believes that hypersonic flight opens a multitude of possibilities for the warfighter. One of the main propulsion systems for hypersonic flight is scramjet engines. These engines are currently ignited using a form of electric discharge and a primer fuel. This primer fuel system takes away valuable volume and weight in hypersonic vehicle designs. One alternative ignition method would be the utilization of plasmonic resonance to flash ignite aluminum nanoparticles. This process had been proven multiple times in the past and research has begun on characterizing how this ignition process can be affected. One that has not been researched to date has been how water content and agglomeration affect the energy needed for ignition to be achieved. To understand this functional dependence, aluminum nanoparticles were put through a series of trials with various levels of water content. Samples of particles were heated at 473.15 K to decrease water content and subsequently tested to determine the energy input needed for ignition. To understand the effects of increasing water content, particles were placed in an environment with at least 100% relative humidity for both 48 and 168 hours and then tested to determine the ignition energy needed. The results from the two humidified cases were compared with the data from a control group whose water content was not altered in a controlled manner. It was determined that by humidifying the particles the minimum energy needed for total ignition was lowered by approximately five percent on average while drying the particles increased the energy needed by approximately four percent on average.
Aaron Altman, PhD (Advisor)
Timothy Ombrello, PhD (Advisor)
David Myszka, PhD (Committee Member)
112 p.

Recommended Citations

Citations

  • Stenger, D. M. (2016). Dependency of Aluminum Nanoparticle Flash Ignition on Sample Internal Water Content and Aggregation [Master's thesis, University of Dayton]. OhioLINK Electronic Theses and Dissertations Center. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1481287759463389

    APA Style (7th edition)

  • Stenger, Dillon. Dependency of Aluminum Nanoparticle Flash Ignition on Sample Internal Water Content and Aggregation. 2016. University of Dayton, Master's thesis. OhioLINK Electronic Theses and Dissertations Center, http://rave.ohiolink.edu/etdc/view?acc_num=dayton1481287759463389.

    MLA Style (8th edition)

  • Stenger, Dillon. "Dependency of Aluminum Nanoparticle Flash Ignition on Sample Internal Water Content and Aggregation." Master's thesis, University of Dayton, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1481287759463389

    Chicago Manual of Style (17th edition)