Skip to Main Content
 

Global Search Box

 
 
 

ETD Abstract Container

Abstract Header

Additive Nanomanufacturing based on Opto-Thermo-Mechanical Nano-Printing

Abstract Details

2020, Doctor of Philosophy (Ph.D.), University of Dayton, Electro-Optics.
In this dissertation, a step-by-step development of a novel opto-thermo-mechanical nano-printing (OTM-NP) technique has been explored. On the way of the development, we have started our journey by demonstrating laser heating-based `release-and-place’ optical printing technique and investigated corresponding parameters, effect of electric field and effect of optical forces for further improvement of the printing accuracy. Finally, we have ended up with the development of novel OTM-NP technique which has the ability to print 2D and 3D structures at nanoscale accuracy. The OTM-NP technique relies on the additive transferring of nanoparticles from a donor substrate to a receiver substrate based on opto-thermo-mechanical (OTM) effect. The OTM effect occurs when an absorptive metallic or semiconductor nanoparticle on a soft substrate is illuminated by a continuous-wave focused laser beam in a gaseous environment in the presence of optical forces. The laser heats the nanoparticle and induces a rapid thermal expansion of the substrate. This thermal expansion force releases the nanoparticle from the soft substrate for nano-repairing or transfer it additively onto a receiver substrate under the guidance of optical axial and gradient forces for nano-printing. Dielectric nanoparticles can also be released from the donor substrate if the substrate itself is absorptive and soft. The exposed area of the substrate absorbs the laser light and causes the thermal expansion of the substrate, which v provides momentum to the non-absorbing nanoparticle and transfers the nanoparticle to a receiver substrate. The printing mechanism and the parameters affecting the printing accuracy of this OTM-NP have been investigated in details. In plane printing of 2D structures using different sizes of nanoparticles as well as out of plane printing with sub 100 nm accuracy have been demonstrated. This OTM-NP technique paves the way for affordable additive manufacturing and rapid prototyping of functional nanoscale devices at ambient conditions, which will find applications in nanophotonic, plasmonic, metamaterial, metasurface, ultrasensitive sensing as well as in nanoelectronics.
Chenglong Zhao, Dr (Committee Chair)
Qiwen Zhan, Dr (Committee Member)
Andy Chong, Dr (Committee Member)
Erick S. Vasquez, Dr (Committee Member)
96 p.

Recommended Citations

Citations

  • Alam, M. S. (2020). Additive Nanomanufacturing based on Opto-Thermo-Mechanical Nano-Printing [Doctoral dissertation, University of Dayton]. OhioLINK Electronic Theses and Dissertations Center. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1591871749553767

    APA Style (7th edition)

  • Alam, Md Shah. Additive Nanomanufacturing based on Opto-Thermo-Mechanical Nano-Printing. 2020. University of Dayton, Doctoral dissertation. OhioLINK Electronic Theses and Dissertations Center, http://rave.ohiolink.edu/etdc/view?acc_num=dayton1591871749553767.

    MLA Style (8th edition)

  • Alam, Md Shah. "Additive Nanomanufacturing based on Opto-Thermo-Mechanical Nano-Printing." Doctoral dissertation, University of Dayton, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1591871749553767

    Chicago Manual of Style (17th edition)