Skip to Main Content
 

Global Search Box

 
 
 

ETD Abstract Container

Abstract Header

Impact of Tapered Combustion Channels on the Operation of a Rotating Detonation Engine

Abstract Details

2022, Master of Science (M.S.), University of Dayton, Aerospace Engineering.

Rotating detonation engines (RDEs) have continued to gain interest in the combustion research industry as a promising form of pressure gain combustion (PGC). The RDE has the potential for better performance than existing turbo-engines with its simplicity of design and manufacturing, lack of moving parts, increased power density, lower entropy, and high thermodynamic efficiency. The large pressure rise, or gain, in PGC can be used to produce increased thrust or extract shaft work. A lot of progress has been made in the last decade, however, there are still many challenges to overcome with RDEs. In particular, there are many complications with the feed mechanics of an RDE that influences the overall RDE performance. The goal of this study is to evaluate if changing the taper of the RDE channel impacts the feed mechanics and operation of the RDE.

Current RDE research has mainly focused on two types of RDE designs – the radial and axial configuration. These configurations relate to the direction air and fuel are injected into the system. For this study, the reactants were fed axially. An existing axial RDE test rig in AFRL is utilized in this investigation, with new components made for the outer body, center body, and the inner and outer air injector plates of each configuration. In this research, three different configurations are tested. One design with no taper, which serves as the baseline. The other additional two configurations feature either a 15-degree taper inward or a 30-degree taper outward. Each of the three design configurations held certain constants in order to be able to make fair comparisons with the data. All designs have a channel length of 4.5 inches and the centerline of each profile starts at the same radial location. The designs have a nominal 0.9-inch channel width and all channel area ratios were held constant across all three designs.

Each design configuration is tested across a wide range of equivalence ratios and mass flows. Pressure and temperature data is collected when each configuration is tested in the different operating conditions, and the data is analyzed and compared. Analysis of the different configurations will show how the geometric changes influence the performance of the RDE.

Matthew Fotia, Ph.D. (Committee Chair)
Christopher Stevens, Ph.D. (Committee Member)
Frederick Schauer, Ph.D. (Committee Member)
66 p.

Recommended Citations

Citations

  • Moosmann, K. (2022). Impact of Tapered Combustion Channels on the Operation of a Rotating Detonation Engine [Master's thesis, University of Dayton]. OhioLINK Electronic Theses and Dissertations Center. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1659551446802722

    APA Style (7th edition)

  • Moosmann, Kaitlin. Impact of Tapered Combustion Channels on the Operation of a Rotating Detonation Engine. 2022. University of Dayton, Master's thesis. OhioLINK Electronic Theses and Dissertations Center, http://rave.ohiolink.edu/etdc/view?acc_num=dayton1659551446802722.

    MLA Style (8th edition)

  • Moosmann, Kaitlin. "Impact of Tapered Combustion Channels on the Operation of a Rotating Detonation Engine." Master's thesis, University of Dayton, 2022. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1659551446802722

    Chicago Manual of Style (17th edition)