Skip to Main Content
 

Global Search Box

 
 
 
 

ETD Abstract Container

Abstract Header

Role of microRNAs in Hepatocarcinogenesis

Abstract Details

2012, Doctor of Philosophy, Ohio State University, Molecular, Cellular and Developmental Biology.

MicroRNAs are conserved, small (20-25 nucleotide) noncoding RNAs that negatively regulate expression of mRNAs at the post-transcriptional level. MicroRNA signature is altered in different disease states including cancer and some microRNAs act as oncogenes or tumor suppressors. To identify microRNAs that may play a causal role in hepatocarcinogenesis we used an animal model in which C57BL/6 mice fed choline deficient and amino acid defined (CDAA) diet develop nonalcoholic steatohepatitis (NASH)-induced hepatocarcinogenesis after 70 weeks. Microarray analysis identified 30 hepatic microRNAs that are significantly (P<.01) altered in mice fed CDAA diet for 6, 18, 32 and 65 weeks compared to those fed choline sufficient and amino acid defined diet (CSAA). Real-time RT-PCR analysis demonstrated upregulation of oncogenic miR-155, miR-181b, miR-221/222 and miR-21 and downregulation of the most abundant liver specific miR-122 at early stages of hepatocarcinogenesis.

Western blot analysis showed reduced expression of hepatic PTEN, a target of miR-21, and C/EBPβ, a target of miR-155, in these mice at early stages. DNA binding activity of NF-κB that transactivates miR-155 gene was significantly (P=0.002) elevated in the liver nuclear extract of mice fed CDAA diet. Further, the expression of miR-155, as measured by in situ hybridization and real-time RT- PCR, correlated with diet-induced histopathological changes in the liver. Ectopic expression of miR-155 promoted growth of hepatocellular carcinoma (HCC) cells whereas its depletion inhibited cell growth. Notably, miR-155 was significantly (P=0.0004) upregulated in primary human HCCs with concomitant decrease (P=0.02) in C/EBPβ level compared to matching liver tissues.

The expression of tissue inhibitor of metalloprotease 3 (TIMP3), a tumor suppressor and a validated miR-181 target, was markedly suppressed in the livers of mice fed CDAA diet. Upregulation of hepatic transforming growth factor β (TGFβ) and its downstream mediators Smad 2, 3 and 4 and increase in phospho-Smad2 in the liver nuclear extract correlated with elevated miR-181b/d in mice fed CDAA diet. The levels of the precursor and mature miR-181b were augmented on exposure of hepatic cells to TGFβ and were significantly reduced by small interference RNA-mediated depletion of Smad4, showing the involvement of TGFβ signaling pathway in miR-181b expression. Ectopic expression of miR-181b showed that miR-181b enhanced matrix metallopeptidases 2 (MMP2) and MMP9 activity and promoted growth, clonogenic survival, migration and invasion of HCC cells that could be reversed by modulating TIMP3 level. Further, depletion of miR-181b inhibited tumor growth of HCC cells in nude mice. miR-181b also enhanced resistance of HCC cells to the anticancer drug doxorubicin.

Conclusion: Temporal changes in microRNA profile occur at early stages of CDAA diet-induced hepatocarcinogenesis. Reciprocal regulation of specific oncomirs and their tumor suppressor targets implicate their role in NASH-induced hepatocarcinogenesis and suggest their use in the diagnosis and prognosis of liver cancer.

Samson Jacob, PhD (Advisor)
Kalpana Ghoshal, PhD (Advisor)
Said Sif, PhD (Committee Member)
Thomas Schmittgen, PhD (Committee Member)
134 p.

Recommended Citations

Citations

  • Wang, B. (2012). Role of microRNAs in Hepatocarcinogenesis [Doctoral dissertation, Ohio State University]. OhioLINK Electronic Theses and Dissertations Center. http://rave.ohiolink.edu/etdc/view?acc_num=osu1329154583

    APA Style (7th edition)

  • Wang, Bo. Role of microRNAs in Hepatocarcinogenesis. 2012. Ohio State University, Doctoral dissertation. OhioLINK Electronic Theses and Dissertations Center, http://rave.ohiolink.edu/etdc/view?acc_num=osu1329154583.

    MLA Style (8th edition)

  • Wang, Bo. "Role of microRNAs in Hepatocarcinogenesis." Doctoral dissertation, Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1329154583

    Chicago Manual of Style (17th edition)