Skip to Main Content
 

Global Search Box

 
 
 

ETD Abstract Container

Abstract Header

Investigation of Optical Effects of Chalcogenide Glass in Precision Glass Molding and Applications on Infrared Micro Optical Manufacturing

Abstract Details

2019, Doctor of Philosophy, Ohio State University, Industrial and Systems Engineering.
Precision glass molding (PGM) is being considered as an alternative to traditional methods of manufacturing large-volume, high-quality and low-cost optical components. In this process, glass optics is fabricated by replicating optical features from precision molds to glass at elevated temperature. Chalcogenide glasses are emerging as alternative infrared materials for their wide range infrared transmission, high refractive index and low phonon energy. In addition, chalcogenide glasses can be readily molded into precision optics at elevated temperature, slightly above its glass transition temperature (Tg), which in general is much lower compared to oxide glasses. The primary goal of this research is to evaluate the thermoforming mechanism of chalcogenide glass around Tg and investigate its refractive index change and residual stresses in molded lens in and post PGM. Firstly, a constitutive model is introduced to precisely predict the material behavior in PGM by integrating subroutines into a commercial finite element method (FEM) software. This modeling approach utilizes the Williams-Landel-Ferry (WLF) equation and Tool-Narayanaswamy-Moynihan (TNM) model to describe (shear) stress relaxation and structural relaxation behaviors, respectively. It is predicted that `index drop’ occurred inside the molded prism due to rapid thermal cycling and the cooling rate above Tg can introduce large geometry deviations to the molded optical lens. Secondly, the refractive index variations inside molded lenses are further evaluated by measuring deviation angle through a prism & wavefront changes through molded lens using a Shack-Hartmann wavefront sensor (SHS), while the residual stresses trapped inside the molded lenses are obtained by using a birefringence method. Measured results of the molded infrared lenses combining numerical simulation provide an opportunity for optical manufacturers to achieve a better understanding of the mechanism and optical performance variation of chalcogenide glasses in and post PGM. Upon completion of the aforementioned research, two typical micro IR optics are designed, fabricated and tested, an infrared SHS and a large field-of-view (FOV) microlens array, as demonstrations. A novel fabrication method combining virtual spindle based high-speed single-point diamond milling and PGM process is adopted to fabricate infrared microlens array. The uniqueness of the virtual spindle based single-point diamond milling is that the surface features can be constructed sequentially by spacing the virtual spindle axis at an arbitrary position based on a combination of rotational and transitional motions of the machine tool. After the mold insert is machined, it is employed to replicate the optical profile onto chalcogenide glass. On the other hand, an infrared compound-eye system consisting of 3×3 channels for a FOV of 48°×48° is developed. The freeform microlens array on a flat surface is utilized to steer and focus the incident light from all three dimensions (3D) to a two-dimension (2D) infrared imager. Using raytracing, the profiles of the freeform microlenses of each channel are optimized to obtain the best imaging performance. To avoid crosstalk among adjacent channels, a micro aperture array fabricated by 3D printing is mounted between the microlens array and IR imager. The imaging tests of the infrared compound-eye imaging system show that the asymmetrical freeform lenslets are capable of steering and forming legible images within the design FOV. Compared to a conventional infrared camera, this novel microlens array can achieve a considerably larger FOV while maintaining low manufacturing cost without sacrificing image quality. Finally, two rapid heating processes are explored and demonstrated by using graphene-coated silicon as an effective and high-performance mold material for precision glass molding. One process is based on induction heating and the other one is based on mid-infrared radiation. Since the graphene coating is very thin (~45 nm), a high heating rate of 5~20 °C/s can be achieved. The contact surface of the Si mold and the polymer substrate can be heated above the Tg within 20 s and subsequently cooled down to room temperature within tens of seconds after molding. The feasibility of this process is validated by the fabrication of optical gratings, micropillar matrices, and microlens arrays on polymethylmethacrylate (PMMA) substrate with high precision. The uniformity and surface geometries of the replicated optical elements are evaluated using an optical profilometer. Compared with conventional bulk heating molding process, this novel rapid localized heating process could improve replication efficiency with better geometrical fidelity.
Allen Yi (Advisor)
Jose Castro (Committee Member)
Jerald Brevick (Committee Member)
170 p.

Recommended Citations

Citations

  • Zhang, L. (2019). Investigation of Optical Effects of Chalcogenide Glass in Precision Glass Molding and Applications on Infrared Micro Optical Manufacturing [Doctoral dissertation, Ohio State University]. OhioLINK Electronic Theses and Dissertations Center. http://rave.ohiolink.edu/etdc/view?acc_num=osu1574784278471913

    APA Style (7th edition)

  • Zhang, Lin. Investigation of Optical Effects of Chalcogenide Glass in Precision Glass Molding and Applications on Infrared Micro Optical Manufacturing. 2019. Ohio State University, Doctoral dissertation. OhioLINK Electronic Theses and Dissertations Center, http://rave.ohiolink.edu/etdc/view?acc_num=osu1574784278471913.

    MLA Style (8th edition)

  • Zhang, Lin. "Investigation of Optical Effects of Chalcogenide Glass in Precision Glass Molding and Applications on Infrared Micro Optical Manufacturing." Doctoral dissertation, Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1574784278471913

    Chicago Manual of Style (17th edition)