Skip to Main Content
 

Global Search Box

 
 
 
 

Files

ETD Abstract Container

Abstract Header

Development and Characterization of Low Cost Tungsten Disulfide Ink for Ink-jet Printing

Abstract Details

2018, MS, University of Cincinnati, Engineering and Applied Science: Electrical Engineering.
As a transition metal dichalcogenide, tungsten disulfide (WS2) exhibits desirable characteristics in the mono to few layer form factor as opposed to its bulk form. One of these properties is a shift from an indirect bandgap of ~1.2 eV in the bulk to a direct bandgap of ~1.8 eV in the monolayer form. This tunable bandgap enables mono to few layered tungsten disulfide to be semiconducting as well as photo-conducting. Traditional methods of fabrication for monolayered tungsten disulfide such as chemical vapor deposition involve high temperatures, rendering them incompatible with processing on flexible substrates, and they have a relatively low yield. While mechanical exfoliation produces high quality monolayered single crystals at reasonable temperatures, it also suffers from the low yield problem. Liquid exfoliation is a viable alternative here, as it can produce both high volumes of mono to few layered flakes, and is compatible with deposition and processing on flexible substrates via printing techniques like ink-jet printing. In this work, first, a printable tungsten disulfide based ink is developed from readily available tungsten disulfide powder (0.6 µm average particle size), and then an ink-jet printing based deposition method for a tungsten disulfide film is presented. In terms of developing a printable ink, optimization of dispersed monolayered flake concentration is discussed as well as characterization of said flakes. Printing parameters and optimization of printed line characteristics is also examined. These line characteristics include constraining the volume of ink deposited to the desired dimensions, light absorption, tungsten disulfide flake coverage, and bulk electrical characteristics in three different lighting conditions. Characterization of the inks is performed by optical UV-Vis spectrometry using a Perkin-Elmer spectrometer, and the presence of exciton absorbance peaks are confirmed and analyzed. Metrics using the A-exciton peak generated by the few-layered flakes are used to calculate the average flake lateral dimensions, the concentration of tungsten disulfide in the inks after size selection and filtering, as well as the average monolayer count of the flakes. After printing, scanning electron microscopy with a FEI XL-30 is used to confirm average flake lateral size and average flake area coverage, while a Veeco Dimension 3100 atomic force microscope is used to confirm flake thickness. Tungsten contacts are deposited by an AJA Sputtering system and patterned via shadow mask. Electrical characterization is performed using a Keithley 4200 semiconductor characterization system to understand conductivity and charge transport properties.
Rashmi Jha, Ph.D. (Committee Chair)
Chong Ahn, Ph.D. (Committee Member)
Punit Boolchand, Ph.D. (Committee Member)
64 p.

Recommended Citations

Citations

  • Mayersky, J. (2018). Development and Characterization of Low Cost Tungsten Disulfide Ink for Ink-jet Printing [Master's thesis, University of Cincinnati]. OhioLINK Electronic Theses and Dissertations Center. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1522418413569074

    APA Style (7th edition)

  • Mayersky, Joshua. Development and Characterization of Low Cost Tungsten Disulfide Ink for Ink-jet Printing. 2018. University of Cincinnati, Master's thesis. OhioLINK Electronic Theses and Dissertations Center, http://rave.ohiolink.edu/etdc/view?acc_num=ucin1522418413569074.

    MLA Style (8th edition)

  • Mayersky, Joshua. "Development and Characterization of Low Cost Tungsten Disulfide Ink for Ink-jet Printing." Master's thesis, University of Cincinnati, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1522418413569074

    Chicago Manual of Style (17th edition)