Skip to Main Content
 

Global Search Box

 
 
 
 

ETD Abstract Container

Abstract Header

Multiscale Modeling of Hemodynamics in Human Vessel Network and Its Applications in Cerebral Aneurysms

Abstract Details

2018, Doctor of Philosophy (PhD), Wright State University, Engineering PhD.
Three-dimensional (3D) simulation of patient-specific morphological models has been widely used to provide the hemodynamic information of individual patients, such as wall shear stress (WSS), oscillatory shear index (OSI), and flow patterns, etc. Since patient-specific morphological segment was only restricted locally, boundary conditions (BCs) are required to implement the CFD simulation. Direct measurements of the flow and pressure waveforms were often required as input BCs for 3D CFD simulations of patient-specific models. However, as the morphology develops, the feedback from this topological deformation may lead to BCs being altered, and hence without this feedback, the flow characteristics of the morphology are only computed locally. A one-dimensional (1D) numerical model containing the entire human vessel network has been proposed to compute the global hemodynamics. In the meantime, experimental studies of blood flow in the patient-specific modeling of the circle of Willies (CoW) was conducted. The flow and pressure waveforms were quantified to validate the accuracy of the pure 1D model. This 1D model will be coupled with a 3D morphological model to account for the effects of the altered BCs. The proposed 1D-3D multi-scale modeling approach investigates how the global hemodynamic changes can be induced by the local morphological effects, and in consequence, may further result in altering of BCs to interfere with the solution of the 3D simulation. Validation of the proposed multi-scale model has also been made by comparing the solution of the flow rate and pressure waveforms with the experimental data and 3D numerical simulations reported in the literature. Moreover, the multi-scale model is extended to study a patient-specific cerebral aneurysm and a stenosis model. The proposed multi-scale model can be used as an alternative to current approaches to study intracranial vascular diseases such as an aneurysm, stenosis, and combined cases.
George Huang, Ph.D. (Advisor)
Zifeng Yang, Ph.D. (Advisor)
Bryan Ludwig, M.D. (Advisor)
Joseph Shang, Ph.D. (Committee Member)
Philippe Sucosky, Ph.D. (Committee Member)
161 p.

Recommended Citations

Citations

  • Yu, H. (2018). Multiscale Modeling of Hemodynamics in Human Vessel Network and Its Applications in Cerebral Aneurysms [Doctoral dissertation, Wright State University]. OhioLINK Electronic Theses and Dissertations Center. http://rave.ohiolink.edu/etdc/view?acc_num=wright1526905279931141

    APA Style (7th edition)

  • Yu, Hongtao. Multiscale Modeling of Hemodynamics in Human Vessel Network and Its Applications in Cerebral Aneurysms. 2018. Wright State University, Doctoral dissertation. OhioLINK Electronic Theses and Dissertations Center, http://rave.ohiolink.edu/etdc/view?acc_num=wright1526905279931141.

    MLA Style (8th edition)

  • Yu, Hongtao. "Multiscale Modeling of Hemodynamics in Human Vessel Network and Its Applications in Cerebral Aneurysms." Doctoral dissertation, Wright State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=wright1526905279931141

    Chicago Manual of Style (17th edition)