Skip to Main Content
Frequently Asked Questions
Submit an ETD
Global Search Box
Need Help?
Keyword Search
Participating Institutions
Advanced Search
School Logo
Files
File List
MehmetAydar_Dissertation_Developing a Semantic Framework for Healthcare Information Interoperability.pdf (1.68 MB)
ETD Abstract Container
Abstract Header
Developing a Semantic Framework for Healthcare Information Interoperability
Author Info
AYDAR, MEHMET
ORCID® Identifier
http://orcid.org/0000-0002-5578-758X
Permalink:
http://rave.ohiolink.edu/etdc/view?acc_num=kent1447721121
Abstract Details
Year and Degree
2015, PHD, Kent State University, College of Arts and Sciences / Department of Computer Science.
Abstract
Interoperability in healthcare is stated as the ability of health information systems to work together within and across organizational boundaries in order to advance the effective delivery of healthcare for individuals and communities. The current healthcare information technology environment breeds incredibly complex data ecosystems. In many cases pertinent patient records are collected in multiple systems, often supplied by competing manufacturers with diverse data formats. This causes inefficiencies in data interoperability, as different formats of data create barriers in exchanging health information. This dissertation presents a semantic framework for healthcare information interoperability. We propose a system for translation of healthcare instance data, based on structured mapping definitions and using RDF as a common information representation to achieve semantic interoperability between different data models. Moreover, we introduce an entity similarity metric that utilizes the Jaccard index with the common relations of the data entities and common string literal words referenced by the data entities and augmented with data entity neighbors similarity. The precision of the similarity metric is enhanced by incorporating the auto-generated importance weights of the entity descriptors in the RDF representation of the dataset. Furthermore, we provide an automatic classification method, which we call summary graph generation, based on the pairwise entity similarities, and we propose that the summary graph can further be utilized for interoperability purposes. Finally, we present a suggestion based semi-automatic instance matching system and we test it on the RDF representation of a healthcare dataset. The system utilizes the entity similarity metric, and it presents similar node pairs to the user for possible instance matching. Based on the user feedback, it merges the matched nodes and suggests more matching pairs depending on the common relations and neighbors of the already matched nodes. We propose that the instance matching technique could be leveraged for mapping between separate data models.
Committee
Austin Melton (Advisor)
Angela Guercio (Committee Member)
Ye Zhao (Committee Member)
Alan Brandyberry (Committee Member)
Helen Piontkivska (Committee Member)
Javed I. Khan (Committee Chair)
James L. Blank (Other)
Pages
107 p.
Subject Headings
Computer Science
;
Health Care
;
Health Sciences
;
Information Systems
;
Information Technology
;
Medicine
Keywords
Healthcare Information Interoperability
;
Semantic Web
;
RDF
;
Translation of Instance Data
;
Summary Graph
;
RDF Instance Match
;
RDF Entity Similarity
;
Automatic Mapping
;
Information Translation
Recommended Citations
Refworks
EndNote
RIS
Mendeley
Citations
AYDAR, M. (2015).
Developing a Semantic Framework for Healthcare Information Interoperability
[Doctoral dissertation, Kent State University]. OhioLINK Electronic Theses and Dissertations Center. http://rave.ohiolink.edu/etdc/view?acc_num=kent1447721121
APA Style (7th edition)
AYDAR, MEHMET.
Developing a Semantic Framework for Healthcare Information Interoperability.
2015. Kent State University, Doctoral dissertation.
OhioLINK Electronic Theses and Dissertations Center
, http://rave.ohiolink.edu/etdc/view?acc_num=kent1447721121.
MLA Style (8th edition)
AYDAR, MEHMET. "Developing a Semantic Framework for Healthcare Information Interoperability." Doctoral dissertation, Kent State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=kent1447721121
Chicago Manual of Style (17th edition)
Abstract Footer
Document number:
kent1447721121
Download Count:
1,400
Copyright Info
© 2015, all rights reserved.
This open access ETD is published by Kent State University and OhioLINK.