Skip to Main Content
 

Global Search Box

 
 
 
 

ETD Abstract Container

Abstract Header

Experimental and Computational Investigations of Strain Localization in Metallic Glasses

Bharathula, Ashwini

Abstract Details

2010, Doctor of Philosophy, Ohio State University, Materials Science and Engineering.
Metallic glasses are metallic alloy systems with disordered atomic structure. Due to their unique amorphous structure, they exhibit an extraordinary set of properties that are ideal for a wide variety of applications ranging from electrical transformers, armor-piercing projectiles, sporting goods and fuel cells to precision gears for micromotors. In particular, owing to their exceptional mechanical properties like near-theoretical strength (1-3 GPa), large elastic strain range (2-3%), and unusual formability above the glass transition temperature, metallic glasses have tremendous potential in structural applications. Unfortunately, their unique structure also gives rise to significant limitations, such as limited ductility at room temperature due to rapid localization of plastic flow in shear bands. However, when the test volumes approach the size of a shear band nucleus (~50-500 nm), it is believed that shear band formation and propagation can be constrained, leading to enhanced plasticity and failure strength. This study investigates the phenomenon of strain localization using both experimental and computational techniques. On the experimental front, sample size effects on strength, plasticity and deformation modes were explored in a Zr-based bulk metallic glass via micron- and sub-micron scale compression testing. Specimens with diameters ranging from 200 nm to a few microns were fabricated using Focused Ion Beam technique and were tested under uniaxial compression in a nanoindentation set-up with a flat punch tip. Effect of extrinsic factors like specimen geometry and machine stiffness on deformation behavior was discussed. Shear banding was shown to be more stable at this length scale than in macro-scale testing because of a smaller specimen to load frame stiffness ratio. It was found that as the specimen size is reduced to below 300 nm, the deformation mode changes from being discrete and inhomogeneous to more continuous flow including both localized and non-localized contributions at low strains. Moreover, the magnitude of strain bursts was found to decrease with decrease in specimen size. Furthermore, Weibull statistical analysis was performed to investigate the effect of specimen size on yield strength in this metallic glass. It was revealed that the dispersion in strengths increases dramatically with decrease in sample size, attributed to the size distribution of the defects responsible for shear banding. The findings are crucial in designing systems which promote plasticity in metallic glasses by suppressing the shear-band instability and also in direct application of these materials for structural purposes as small components in micro- and nano-scale systems. On the computational front, Molecular Dynamics (MD) simulations have been employed to generate Zr-Cu metallic glass structures. In order to analyze and better understand and visualize the concepts of “free” volume and flow defects in metallic glasses, an electron density model was developed as an upgrade to the traditional hard sphere approaches. Simple tension and shear modes of deformation were simulated using MD in Zr-Cu system, and role of open volume in deformation was studied using the electron density model. In uniaxial tension simulations, effect of temperature and deformation rate is examined, and the process of accumulation of free volume to the point of catastrophic failure is visualized using the Electron Density model. In shear simulations, we find that the as-quenched glass structures undergo homogeneous deformation and do not exhibit any strain localization. However, it is found that by incorporating a cylindrical void in the glass structure as a source of “free” volume, it is possible to induce strain localization. It was found that a critical void diameter of 8 Angstroms was required to successfully initialize strain localization in this system.
Katharine Flores (Advisor)
Wolfgang Windl (Committee Member)
Michael Mills (Committee Member)
Saleh Tanveer (Other)
150 p.

Recommended Citations

Citations

  • Bharathula, A. (2010). Experimental and Computational Investigations of Strain Localization in Metallic Glasses [Doctoral dissertation, Ohio State University]. OhioLINK Electronic Theses and Dissertations Center. http://rave.ohiolink.edu/etdc/view?acc_num=osu1282158393

    APA Style (7th edition)

  • Bharathula, Ashwini. Experimental and Computational Investigations of Strain Localization in Metallic Glasses. 2010. Ohio State University, Doctoral dissertation. OhioLINK Electronic Theses and Dissertations Center, http://rave.ohiolink.edu/etdc/view?acc_num=osu1282158393.

    MLA Style (8th edition)

  • Bharathula, Ashwini. "Experimental and Computational Investigations of Strain Localization in Metallic Glasses." Doctoral dissertation, Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1282158393

    Chicago Manual of Style (17th edition)